Decay modes of the Hoyle state in ¹²C

H. Zheng,¹ A.Bonasera,^{1,2} M. Huang,³ and S. Zhang³

¹Laboratori Nazionali del Sud, INFN, via Santa Sofia, 62, 95123, Catania, Italy ²Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA ³College of Physics and Electronics Information, Inner Mongolia University for Nationalities, Tongliao, 028000, China

Recent experimental results give an upper limit to the direct decay of the Hoyle state into 3α of equal energy respect to the sequential decay into ⁸Be+ α less than 0.043% (95% C.L.). We performed one and two-dimensional tunneling calculations to estimate such a ratio and found it to be more than one order of magnitude smaller than experiment depending on the strength of the nuclear force [1]. This is within high statistics experimental capabilities. Our results can also be tested by measuring the high excitation energy states of ¹²C decay modes where the ratio of direct to sequential decay might reach 10% at E^{*}(¹²C)=10.3MeV. The link between a Bose Einstein Condensate (BEC) and the direct decay of the Hoyle state is also addressed. We discuss a hypothetical 'Efimov state' at E^{*}(¹²C)=7.458MeV, which would mainly *sequentially* decay with 3α of equal energies: a counterintuitive result of tunneling. Such a state, if it would exist, is at least 3 orders of magnitude less probable than the Hoyle's, thus below the sensitivity of recent and past experiments.

[1] H. Zheng et al., Phys. Lett. B 779, 460 (2018).